切换到宽版
  • 3463阅读
  • 5回复

防屈曲支撑的规范 [复制链接]

上一主题 下一主题
 

发帖
31
金币
33
怪币
0
只看楼主 倒序阅读 楼主  发表于: 2014-09-23
谁有防屈曲支撑的规范没有,好心发我一份吧。邮箱:178621859@qq.com


发帖
31
金币
33
怪币
0
只看该作者 沙发  发表于: 2014-09-23
   规范规范快快来。
离线mmkkgg2010

发帖
9656
金币
937
怪币
0
只看该作者 板凳  发表于: 2014-09-24
百度下

发帖
31
金币
33
怪币
0
只看该作者 地板  发表于: 2014-09-24
离线mmkkgg2010

发帖
9656
金币
937
怪币
0
只看该作者 4楼 发表于: 2014-09-24
屈曲约束支撑编辑
本词条缺少概述、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
中文名屈曲约束支撑
外文名Buckling-Restrained braced
别    名防屈曲支撑
目录
1基本原理
2产品优点
▪ 承载力与刚度分离
▪ 承载力高
▪ 延性与滞回性能好
▪ 保护主体结构
▪ 减小相邻构件受力
3产品性能
4芯板材性
5产品验收标准
6主要生产厂家
1基本原理
编辑

屈曲约束支撑又称防屈曲支撑或BRB(Buckling restrained brace),产品技术最早发展于1973年的日本,当时的一批日本学者成功研发了最早的墙板式防屈曲耗能支撑,并对其进行了加入不同无粘结材料的拉压试验;1994年北岭地震后,美国也开始对防屈曲支撑体系进行相应的设计研究和大比例试验,同时结合理论计算分析了该支撑体系较其他支撑体系的优点。[1]
防屈曲支撑可为框架或排架结构提供很大的抗侧刚度和承载力(参见图1
图1.支撑体系与非支撑体系荷载位移曲线对比
图1.支撑体系与非支撑体系荷载位移曲线对比
),采用支撑的结构体系在建筑结构中应用十分广泛。
普通支撑受压会产生屈曲现象,当支撑受压屈曲后,刚度和承载力急剧降低。在地震或风的作用下,支撑的内力在受压
图2.普通支撑试验滞回曲线
图2.普通支撑试验滞回曲线
和受拉两种状态下往复变化。当支撑由压曲状态逐渐变至受拉状态时,支撑的内力以及刚度接近为零。因而普通支撑在反复荷载作用下滞回性能较差(参见图2)。
为解决普通支撑受压屈曲以及滞回性能差的问题,在支撑外部设置套管,约束支撑的受压屈曲,构成屈曲约束
图3.屈曲约束支撑构成原理图
图3.屈曲约束支撑构成原理图
支撑(参见图3)。
屈曲约束支撑仅芯板与其他构件连接,所受的荷载全部由芯板
图4.屈曲约束支撑与普通支撑滞回性能对比
图4.屈曲约束支撑与普通支撑滞回性能对比
承担,外套筒和填充材料仅约束芯板受压屈曲,使芯板在受拉和受压下均能进入屈服,因而,屈曲约束支撑的滞回性能优良(参见图4)。屈曲约束支撑一方面可以避免普通支撑拉压承载力差异显著的缺陷,另一方面具有金属阻尼器的耗能能力,可以在结构中充当“保险丝”,使得主体结构基本处于弹性范围内。因此,屈曲约束支撑的应用,可以全面提高传统的支撑框架在中震和大震下的抗震性能(参见表1-1)。
表1-1屈曲约束支撑框架与普通支撑框架的抗震性能比较
状态
传统支撑框架
屈曲约束支撑框架
主体结构
普通支撑
主体结构
屈曲约束支撑
小震
弹性
弹性
弹性
弹性
中震
弹性或塑性
弹性或屈曲
弹性
塑性(耗能)
大震
塑性
屈曲
弹性或塑性
塑性(耗能)
中、大震后
拆除损坏部分,影响建筑使用
检查屈曲约束支撑,更换不影响建筑物使用
2产品优点
编辑

与普通支撑相比,屈曲约束支撑具有以下优点:
承载力与刚度分离

防屈曲支撑的最大优点是其自身的承载力与刚度的分离。普通支撑因需要考虑其自身的稳定性,使截面和支撑刚度过大,从而导致结构的刚度过大,这就间接地造成地震力过大,形成了不可避免的恶性循环。选用防屈曲支撑,即可避免此类现象,在不增加结构刚度的情况下满足结构对于承载力的要求。
承载力高

抗震设计中,普通支撑的轴向承载力设计值为:

延性与滞回性能好

屈曲约束支撑在弹性阶段工作时,就如同普通支撑可为结构提供很大的抗侧刚度,可用于抵抗小震以及风荷载的作用。屈曲约束支撑在弹塑性阶段工作时,变形能力强、滞回性能好,就如同一个性能优良的耗能阻尼器,可用于结构抵御强烈地震作用。
保护主体结构

屈曲约束支撑具有明确的屈服承载力,在大震下可起到“保险丝”的作用,用于保护主体结构在大震下不屈服或者不严重破坏,并且大震后,经核查,可以方便地更换损坏的支撑。
减小相邻构件受力

当支撑为人字形或V字型布置时,由于普通支撑受压屈曲,受拉与受压承载力差异可能很大,而普通支撑的截面由受压承载力控制,但支撑受拉时其内力最大可达到受拉承载力,故与支撑相邻构件的内力由支撑受拉承载力控制。如采用屈曲约束支撑,支撑受拉与受压承载力差异很小,可大大减小与支撑相邻构件的内力(包括基础),减小构件截面尺寸,降低结构造价。
3产品性能
编辑

屈曲约束支撑一般由3部分构成,即核心单元、约束单元及滑动机制单元,其中核心单元即芯材,又称为主受力单元,是构件中主要的受力元件,由特定强度的钢板制成。常见的截面形式为十字形、T形、双T形和一字形等,分别适用于不同的刚度要求和耗能需求。约束单元又称侧向支撑单元,负责提供约束机制,以防止核心单元受轴压时发生整体或余部屈曲。比较常见的约束形式为钢管填充混凝土或纯钢型结构约束。滑动机制单元又称为脱层单元,是在核心单元与约束单元间提供滑动的界面,使支撑在手拉和受压时尽可能有相似的力学性能,避免核心单元因受压膨胀后语约束单元间产生摩擦力而造成轴压力的大量增加,这种滑动单元一般是由一些无粘结材料制作而成的。
图3-1 不同类型防屈曲支撑的截面
图3-1 不同类型防屈曲支撑的截面[2]
如前所述,常见的屈曲约束支撑包括两种类型——灌浆型和纯钢型(图3-1),灌浆型指约束材料为混凝土材料,而纯钢型则指整个产品仅使用钢材的情况,灌浆型产品为早期产品,在各国使用较为广泛,而纯钢型则相对发展较晚,但由于其自身优势明显,已开始在各国大面积使用。
灌浆型与纯钢型屈曲约束支撑有如下优缺点:1、灌浆型由于使用混凝土做为填充材料,与纯钢型相比,其质量较为难以控制,而纯钢型则可直接使用成熟的钢结构加工方式进行加工,质量可严格控制到机械产品的精度;2、灌浆型由于产品本身使用混凝土灌浆料,而纯钢型一般内部为空心结构,因此灌浆型自重要比纯钢型大很多;3、灌浆型由于受其自身产品结构的限制,很难将截面做的很小,而同样吨位下,纯钢型则形式更为自由,体积更小。[2]  防屈曲约束的承载力由其自身芯材的截面和使用的钢材型号来进行控制,根据对于产品承载力的不同要求,芯板材料通常可采用低屈服点钢材(屈服强度160MPa和225MPa)、普通低碳钢(Q235钢)或其他高强钢(Q345钢、Q390钢、Q420钢),也就是在同一种屈服力的情况下,我们可以使用很多的组合来达到这个目的,如需要的屈服力为235MPa,则如果使用Q235钢,取其芯材截面为1,而使用Q160钢则为了达到这个屈服力,其芯材截面就需要取到1*235/160=1.46,因此通常情况下只要在进行产品设计时选择合理的芯材截面,则不同的钢材屈服力将完全无法对产品的性能产生影响。
4芯板材性
编辑

《碳素结构钢》(GB-T700-2006)[3] 及《低合金强度钢》(GB-T1591-1994)[4] 两个国家标准中对于钢材的质量分为A、B、C、D四种质量等级,主要区别为对于不同质量等级A类不需要做冲击试验,而B、C、D类均需在不同温度下进行冲击试验。国家规定中对于钢材仅要求其屈服度不低于某个数值,如Q235钢材的屈服力应不低于235MPa,而没有要求其屈服力不高于某个数值,这样造成的情况就是如果Q235钢材的屈服力为300MPa,则也是满足要求的。由于在进行防屈曲支撑的产品设计时,产品本身对与芯板材料的屈服力较为敏感,因此所使用的芯材钢板均需进行相关的试验来确定其真实屈服力之后才能用于产品生产加工。
通常我们所说的低屈服点钢的概念来源于日本,主要指代其屈服强度在某一个狭小范围内(±20N/mm2)的钢材,而不是我们所说的如Q100、Q160或Q225之类屈服点较低的钢材,因为国家规范中没有对于钢材屈服度的上限控制标准,因此主要使用低屈服点钢来指代性能较为稳定的钢材;但国内的钢材加工水平仍然要低于日本,因此即使被称为低屈服钢,在国内也仍然只能认为是屈服点较低的钢而已,而钢材实际的屈服点仍然需要使用试验的方法来进行检验,其产品的性能并不能完全与日本的低屈服点钢进行等价。[2]
5产品验收标准
编辑

对于防屈曲支撑产品的验收标准,仅在我国的2010版《建筑抗震设计规范》(GB 50011-2010)和《高层民用建筑钢结构技术规程》(JGJ99-2010)送审稿中有所提及,但标准仍然较低:
1、[GB 50011-2010]屈曲约束支撑应按照同一工程中支撑的构造形式、约束屈服段材料和屈服承载力分类进行抽样试验检验,构造形式和约束屈服段材料相同且屈服承载力在50%至150%范围内的屈曲约束支撑划分为同一类别。每种类别抽样比例为2%,且不少于一根。试验时,依次在1/300,1/200,1/150,1/100 支撑长度的拉伸和压缩往复各3 次变形。试验得到的滞回曲线应稳定、饱满,具有正的增量刚度,且最后一级变形第3 次循环的承载力不低于历经最大承载力的85%,历经最大承载力不高于屈曲约束支撑极限承载力计算值的1.1 倍。[5]
2、[GB 50011-2010]金属屈服位移相关型消能器等不可重复利用的消能器,在同一类型中抽检数量不少于2 个,抽检合格率为100%,抽检后不能用于主体结构。型式检验和出厂检验应由第三方完成。[5]
3、[JGJ99-2010]E.5.1 屈曲约束支撑的设计应基于试验结果,试验至少应有两组:一组为组件试验,考察支撑连接的转动要求;另一组为支撑的单轴试验,以检验支撑的工作性状,特别是在拉压反复荷载作用下的滞回性能。[6]
4、[JGJ99-2010]E.5.2 屈曲约束支撑的试验加载应采取位移控制,对构件试验时控制轴向位移,对组件试验时控制转动位移。[6]
5、[JGJ99-2010]E.5.3 耗能型屈曲约束支撑试验应按以下加载幅值及顺序进行:依次在1/300、1/200、1/150、1/100 支撑长度的拉伸和压缩往复各3 次变形,实现轴向累计非弹性变形至少为屈服变形的200 倍(组件试验不做此要求)[6]
6、[JGJ99-2010]
E.5.4 屈曲约束支撑的试验检验要求
1)同一工程中,屈曲约束支撑应按照支撑的构造形式、核心钢支撑材料和屈服承载力分类别进行试验检验。抽样比例为2%,每种类别至少有一根试件。构造形式和核心钢支撑材料相同且屈服承载力在试件承载力的50%至150%范围内的屈曲约束支撑划分为同一类别。
2)宜采用足尺试件进行试验。如果试验装置无法满足足尺试验要求,可以减小试件的长度。
3)屈曲约束支撑试件及组件的制作应反映设计实际情况,包括材料、尺寸、截面构成及支撑端部连接等情况。
4)应按照相关的国家标准,对屈曲约束支撑核心钢支撑的每一批钢材进行材性试验。
5)当屈曲约束支撑试件的试验结果满足下列要求时,试件检验合格:
a)材性试验结果满足E.3.8 条第1 款的要求;
b)屈曲约束支撑试件的滞回曲线表现稳定、饱满,刚度稳定增长,没有刚度退化现象;
c)屈曲约束支撑没有出现断裂和连接部位破坏现象;
d)屈曲约束支撑试件每一加载循环核心单元屈服后的最大拉、压承载力均不低于屈服荷载,且最大压力和最大拉力之比不大于1.3。[6]
针对于传统减震设计的规范已在评审中,未发布,为《建筑减震消能规范》送审稿,其中对于产品的检测标准为:[7]
常规性能
序号
项目
性能要求
1
屈服荷载
在设计值的±15%以内;在设计值的±10%以内。
2
屈服位移
在设计值的±15%以内;屈服位移设计值的±10%以内。
3
屈服后刚度
在设计值的±15%以内;在设计值的±10%以内
4
极限荷载
在设计值的±15%以内;在设计值的±10%以内。
5
极限位移
每个实测产品极限位移值不应小于设计极限位移值。
6
滞回曲线面积
任一循环中滞回曲线包络面积实测值偏差应在产品设计值的±15%以内;实测值偏差的平均值应在产品设计值的±10%以内。
疲劳性能
1
阻尼力
实测产品在罕遇地震作用时的设计位移下连续加载30圈,任一个循环的最大、最小阻尼力应在所有循环的最大、最小阻尼力平均值的±15%以内。
2
滞回曲线
1) 实测产品在罕遇地震作用时的设计位移下连续加载30 圈,任一个循环中位移为零时的最大、最小阻尼力应在所有循环中位移为零时的最大、最小阻尼力平均值的±15%以内。
2) 实测产品在罕遇地震作用时的设计位移下,任一个循环中阻尼力为零时的最大、最小位移应在所有循环中阻尼力为零时的最大、最小位移平均值的±15%以内。
3
滞回曲线面积
实测产品在罕遇地震作用时的设计位移下连续加载30圈,任一个循环的滞回曲线面积应在所有循环的滞回曲线面积平均值的±15%以内。
6主要生产厂家
编辑

上海蓝科建筑减震科技股份有限公司
上海欧本钢结构有限公司
中国建筑科学研究院
北京羿射旭科技有限公司
衡水震泰隔震器材有限公司
词条图册更多图册


词条图片(6张)
离线cjicxb1314

发帖
237
金币
0
怪币
0
只看该作者 5楼 发表于: 2014-09-28